Mark schemes

1. (a) (The M of I decreases) because more mass closer to axis of rotation \checkmark_{1} $I \omega /$ angular momentum constant since no external torque \checkmark_{2} since I decreases, ω must increase $\sqrt{3}$

For \checkmark_{1} must have the idea of mass distribution around axis of rotation. Do not accept answers which give only decrease in radius as reason for lower M of I.

For \checkmark_{2} condone answers which do not mention the condition of no external torque. \checkmark_{3} cannot be awarded if conservation of rotational kinetic energy used.
(b) $\quad I_{1} \omega_{1}=I_{2} \omega_{2} \quad \omega_{1}=4.3 \mathrm{rad} \mathrm{s}^{-1} \checkmark$

Accept the answer $4.3 \mathrm{rad} \mathrm{s}^{-1}$ if no working shown.
(c) Finds time for one rotation \checkmark

Divides 1.2 by time
AND
gives answer for complete rotations, not rounded up. \checkmark
time for 1 rotation $=2 \pi / 14.2=0.442 \mathrm{~s}$
1.2/0.442 $=2.7$ rotations/turns/somersaults.

OR Angle turned through $=14.2 \times 1.2=17.04 \mathrm{rad}$
$17.04 / 2 \pi=2.7$ rotations
OR
Finds angle turned through in $1.2 \mathrm{~s} \mathbf{~}$
Divides by 2π
AND
gives answer for complete rotations, not rounded up. \checkmark
Expect to see 2 complete
rotations/turns/somersaults.
For MP2 give CE for time or angle from MP1
(d) Any 2 from:

- build up a greater initial angular speed around the bar \checkmark so reaches a greater height/will rotate faster in tuck \checkmark
- release at a greater angle from the horizontal \checkmark so will rise to greater height giving more time for somersaults \checkmark
- get into tuck position earlier/get out of tuck position later \checkmark so turning for more time \checkmark
- get into tighter tuck position \checkmark reducing I_{2}, and increasing $\omega_{2} \checkmark$

Any 2
statement \checkmark and correct reason \checkmark scores 2 marks for each.
2. (a) Equates initial E_{p} to linear E_{k} and rotational $E_{k} \checkmark$

Substitutes values and uses $V=r \omega \checkmark$
Calculates V to give $0.51 \mathrm{~m} \mathrm{~s}^{-1} \checkmark$
$9.2 \times 10^{-2} \times 9.81 \times 0.5=\left(1 / 2 \times 9.2 \times 10^{-2} V^{2}\right)+(1 / 2 \times$
$\left.8.6 \times 10^{-5} \times \frac{V^{2}}{0.005^{2}}\right)$
$V=0.51 \mathrm{~m} \mathrm{~s}^{-1}$
Some substitution of data must be seen for MP2
Do not allow MP3 for no consideration of linear E_{k}
Give 1 mark if $m g h=1 / 2 I \omega^{2}$ used with
answer $0.51 \mathrm{~m} \mathrm{~s}^{-1}$
(b) Calculates α from $\alpha=T / I \checkmark$

Attempts to use any appropriate equation(s) of motion (for angular motion) \checkmark
Substitutes into equation(s) of motion and calculates $\theta \checkmark$
$\alpha=\left(8.3 \times 10^{-4}\right) / 8.6 \times 10^{-5}=9.65 \mathrm{rad} \mathrm{s}^{-2}$
or $9.7 \mathrm{rad} \mathrm{s}^{-2}$
$\theta=145 \times 10-1 / 2 \times 9.7 \times 10^{2}=967 \mathrm{rad}$ or 970 rad
MP2: $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$ is not enough on its own as there are two unknowns.
MP2: Quoting appropriate formula(e) is not enough. There must be some attempt at substituting the data.
3. (a) No (net) external torque acts (on the system) \checkmark

Do not accept force for torque
(b) $I_{\mathrm{A}} \omega_{\mathrm{A}}+I_{\mathrm{B}} \omega_{\mathrm{B}}=\left(I_{\mathrm{A}}+I_{\mathrm{B}}\right) \omega \checkmark$
(taking clockwise as positive)
$(7.2 \times 95)+(11.5 \times-45)=18.7 \omega$
$\omega=(+) 8.9 \mathrm{rad} \mathrm{s}^{-1} \checkmark$
clockwise $\sqrt{ }$
Accept answers with anticlockwise taken as positive.
1 st mark for equation or substitution, but condone any incorrect sign for angular velocity.
2nd mark: answer to at least 2 sf
3rd mark for direction, ECF provided direction agrees with sign in calculated answer and sign convention used.
3rd mark is not an independent mark and is contingent on some attempt at calculation using angular momentum
(c) Attempts to use Angular impulse $=T t=\Delta(I \omega) \checkmark$

Clutch C: $600 t=7.2 \times(95-8.9)=620(\mathrm{~N} \mathrm{~m} \mathrm{~s})$
$t=1.03 \mathrm{~s}$
OR $\alpha=(95-8.9) / t$
$600=I \alpha=7.2(95-8.9) / t$
$t=1.03 \mathrm{~s}$
Clutch D: $320 t=7.2 \times(95-8.9)$
$t=1.93 \mathrm{~s} \checkmark$ (for either or both times calculated)
Compares correct times with $1 \mathrm{~s}<t<2 \mathrm{~s}$ and concludes both clutches satisfy criterion. \checkmark
1st mark: attempts to use idea of angular impulse
Mark not given for just quoting formula.
2nd mark: correct time(s) calculated for either or both clutches
OR torques calculated for 1 s and/or 2 s [620 Nm and 310 Nm]
3rd mark: correct conclusion based on correct times for both clutches
OR based on comparing calculated torques for 1 and $2 s$ with data in Table 2
Answers may be worked out using shaft B :
$T \times t=11.5 \times(-45-8.9)=(-) 620 \mathrm{Nm} \mathrm{s}$
Give full marks if $9 \mathrm{rad} \mathrm{s}^{-1}$ is used, giving
angular impulse $=619 \mathrm{~N} \mathrm{~m} \mathrm{~s}$
t for clutch $C=1.03 \mathrm{~s}$
t for clutch $D=1.93 \mathrm{~s}$
4. (a) Work done \checkmark
(b) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist marking this question.

Mark	Criteria
6	There is a response to all 3 bullet points in the question. There is a good understanding of the function of a flywheel, and why the torque varies markedly in a diesel engine. Student can relate the answer to the two graphs. Includes 6 or more answer points from the list alongside
5	There is a response to all 3 bullet points in the question covering 6 answer points. Answers will not be as confident or detailed as for 6 marks, or answers may not be expressed using scientific terminology.
4	The student gives five or more answer points covering at least two of the bullet points.
3	At least four pertinent statements. They may show little understanding of the electric motor but should be able to give some reasons why a diesel engine needs a flywheel.
2	Two or three pertinent statements taken from the list of likely answer points.
1	One pertinent statement.
0	No sensible statements made.

Other sensible and applicable points can be accepted in lieu of any of those alongside.

Likely answer points:

1st bullet

1. Electric motor's constant torque means smooth motion/doesn't need smoothing/doesn't need a flywheel
2. motor's output torque matches the described load

2nd bullet

3. relates force/pressure on piston to torque
4. force on piston varies over one cycle (as pressure in cylinder varies)
5. \quad Torque $=F r$ and effective r varies as crank rotates
6. -ve torque: when work is being done on (the gas in) the engine (during induction, comp, exhaust strokes)
7. Zero torque when con rod and crank are in line/at top and bottom dead centres
8. This happens at crank angles which are multiples of π 3rd bullet
9. Diesel engine's (varying torque) will give uneven/jerky motion/cause stalling
10. Flywheel acts as energy store
11. Flywheel absorbs energy on power/expansion stroke
12. and gives up energy on other parts of cycle
13. Flywheel speeds up on expansion stroke
14. and slows down during other strokes.
15. The greater the M of I of flywheel, the smoother the motion
16. If no flywheel engine will stall/become very uneven/jerky
17. The greater the M of I of flywheel, the longer engine will take to speed up, slow down/stop
18. Because machine has low M of I it will not be able to store energy itself or smooth the motion.
19. (a) Sum of all constituent masses \times their radius/distance from the axis squared Allow $\Sigma m r^{2}$ with m defined as small mass or constituent mass or particle at a radius r and Σ explained.
Condone: 'from the axis' missing
Condone: a quantity expressing a body's tendency to resist angular acceleration/change in angular speed
(b) $\quad E_{\mathrm{P}}$ lost (by falling mass) $=E_{\mathrm{K}}$ pulley $+E_{\mathrm{K}}$ mass \checkmark
$0.5 M g h=1 / 2(0.5 M) v^{2}+1 / 2\left(0.5 M R^{2}\right) \omega^{2}$
Cancel 0.5 and M and substitute $\omega={ }^{v}$ for ω
gives $g h=1 / 2 v^{2}+1 / 2 v^{2}=v^{2} \checkmark$
use of $v^{2}=u^{2}+2 a s$ giving $v^{2}=2 a h \checkmark$
substitutes $v^{2}=2 a h$ in $g h=v^{2}($ so $a=0.5 g) \checkmark$
1 st mark for equating E_{P} lost by mass to E_{K} gained by both mass and pulley. Accept this step in words or symbols
2nd mark for $g h=v^{2}$
3rd mark for v^{2} in terms of h
4th mark for combining correctly (to get $a=0.5 g$)
OR
$0.5 M g-F=0.5 M a \checkmark$
Torque $=I \alpha F \times R=\left(0.5 M R^{2}\right) \alpha \checkmark$
(giving $F=0.5 M R \alpha$)
and substitute $\alpha=a / R$
leading to $F=0.5 M a \checkmark$
Substitute for F in $0.5 M g-F=0.5 M a$ (gives $a=0.5 g$) \checkmark
OR with F or other letter as tension in string:
1st mark for Newton's 2nd law applied to mass in words or symbols
2nd mark for accelerating torque equation
3rd mark F in terms of a
4th mark for substituting to get $a=0.5 \mathrm{~g}$
Note: $\alpha=a / R$ is not in the spec, but students may know it and use this route.
Give ECF if M is used for the falling mass in place of $0.5 M$
(c)

Route 1	Route 2
M of I spoked pulley is greater \checkmark_{1} Reason given for greater M of I but must have reference to distribution or spread of mass about axis $\sqrt{2}^{2}$ Greater proportion of E_{P} loss given to pulley OR lower prop to E_{K} of falling mass \checkmark_{3} v of mass in same time will be lower so acceleration lower \checkmark_{4}	M of I spoked pulley is greater \checkmark_{1} Reason given for greater M of I but must have reference to distribution or spread of mass about axis $\sqrt{2}^{2}$ Presents valid argument relating I to α \checkmark_{3} $\alpha=a / R$ (with α less) so acceleration of mass is less OR wheel turns through fewer rotations in same time so point on rim moves less distance so acceleration less \checkmark_{4}

WTTE
For \checkmark_{3} and \checkmark_{4} marks in route 2
$0.5 M(g-a)=F$
$0.5 M(g-a) R=I \alpha$
$0.5 M g=a\left(0.5 M+I / R^{2}\right) a$
If I increases, a decreases.
Max 3
6. (a) The (total) angular momentum (of a system) remains constant provided no external torque acts (on the system) \checkmark

Must see 'angular'. Condone 'is conserved' for 'is constant'
Allow ang momtm before equals/is same as ang momtm after OR
initial ang momtm = final ang momtm
Allow I ω is constant if symbols explained
Do not allow 'force' in place of 'torque'
(b) Use of $I=I_{\mathrm{BODY}}+2 \times m r^{2} \checkmark$
$I_{1}=\left(71+2 \times 5.0 \times 4.1^{2}\right)=239 \mathrm{~kg} \mathrm{~m}^{2} \checkmark$
($\approx 240 \mathrm{~kg} \mathrm{~m}^{2}$)
For 2 marks 239 must be seen
(c) M of I decreases \checkmark

Because more mass closer to axis OR (for pods) $\underline{I=(\Sigma) m r^{2}}$ with r less \checkmark
$I \omega$ / angular momentum remains constant/is conserved
(So as I decreases) ω must increase \checkmark
Condone 'inertia' for 'moment of inertia'
2nd mark is for the reason why I is decreasing. Answer must relate to pods or masses getting closer to the axis. 'radius decreasing' on its own is not enough. Accept: pods get closer to axis/body as this implies mass is getting closer.
Both points needed for 3rd mark
(d) (Applies conservation of angular momentum $/ I_{1} \omega_{1}=I_{2} \omega_{2}$)
$I_{1} \omega_{1}=240 \times 1.3=(312(\mathrm{~N} \mathrm{~m} \mathrm{~s})) \checkmark$
$312=\left(71+2 \times 5.0 \times 0.74^{2}\right) \omega_{2}$
$\omega_{2}=4.08 \mathrm{rad} \mathrm{s}^{-1} \checkmark$
Therefore max speed not reached OR arms can be retracted safely $\sqrt{ }$
OR
$I_{1} \omega_{1}=240 \times 1.3=(312(\mathrm{~N} \mathrm{~m} \mathrm{~s})) \checkmark$
$312=\left(71+2 \times 5.0 \times r_{2}{ }^{2}\right) 4.2$
$r_{2}=0.57 \mathrm{~m}$ V
So with r at circumference max speed not reached OR arms can be retracted safely \checkmark

OR
$I_{1} \omega_{1}=240 \times 1.3=(312(\mathrm{~N} \mathrm{~m} \mathrm{~s})) \checkmark$
$312=4.2 I_{2}$ at safety limit
$I_{2}=74(.3) \mathrm{kg} \mathrm{m}^{2} \checkmark$
Actual $I_{2}=76.5 \mathrm{~kg} \mathrm{~m}^{2}$
Therefore max speed not reached OR arms can be retracted safely $\sqrt{ }$
Using $239 \mathrm{~kg} \mathrm{~m}^{2}$ instead of $240 \mathrm{~kg} \mathrm{~m}^{2}$ leads to
$\omega^{2}=4.06 \mathrm{rad} \mathrm{s}^{-1}$
Useful: $I_{2}=76.5 \mathrm{~kg} \mathrm{~m}^{2}$
Only credit last mark if conservation of angular momentum is used
Allow a judgement based on incorrect working (eg AE) provided conservation of angular momentum is used
Using $239 \mathrm{~kg} \mathrm{~m}^{2}$ instead of $240 \mathrm{~kg} \mathrm{~m}^{2}$ leads to $r_{2}=0.55 \mathrm{~m}$
7. (a) $2.9 \mathrm{rev} \mathrm{s}^{-1}$ equivalent $=2 \pi \times 2.9 \mathrm{rad} \mathrm{s}^{-1}=8.2 \mathrm{rad} \mathrm{s}^{-1}$

OR $I=2 E_{\mathrm{k}} / \omega^{2}$
OR correct substitution in $E_{\mathrm{k}}=1 / 2 I \omega^{2} \checkmark$
leading to $I=6.2 \times 10^{-2} \mathrm{~kg} \mathrm{~m}^{2} \checkmark$
1st mark for correct conversion rev s ${ }^{-1}$ OR rearranging energy
equation in terms of I OR correct substitution in $E_{k}=1 / 2 I \omega^{2}$
2nd mark for correct answer.
Do not allow final answer to 1 sig fig e.g. 0.06
(b) I depends on how mass is distributed about axis (of rotation)

For arms, screw and punch same mass is/point masses are closer to axis than the steel balls (making M of I lower) \checkmark
I depends on r^{2} so I changes greatly for small change in in $r \checkmark$
Allow 'other parts' or 'other components' if it is clear this means screw, punch and arms
(c) $\quad \alpha=\frac{2 \times \pi \times(0-2.9)}{0.089}=-205 \mathrm{rad} \mathrm{s}^{-2} \checkmark$

Attempt to use $\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$ or $\theta=\omega 1 \mathrm{t}+1 / 2 \alpha \mathrm{t}^{2}$
or $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t \checkmark$
giving $\theta=0.81$ rad \checkmark
Condone missing sign or α given as positive Accept 200 rad s ${ }^{-2}$
If α positive, 2nd mark for attempt to use
$\omega_{2}^{2}=\omega_{1}{ }^{2}-2 \alpha \theta$ or $\theta=\omega_{1} t-1 / 2 \alpha t^{2}$
or $\theta=1 / 2\left(\omega_{1}+\omega_{2}\right) t \checkmark$
ECF for value of ω used in (a)
(d) $\quad\left(I=2 m r^{2}\right.$ and $\left.E_{\mathrm{k}}=1 / 2 I \omega 2\right)$

Increasing y by 15% gives new $I=1.15^{2} \times$ original I (or 1.32) \checkmark
Increasing R by 15% increases I by 1.15^{3} (or 1.52) \checkmark
Second option gives greater increase in I, and E_{k} also increased (by same ratio). \checkmark
Accept answers without calculation:
I prop to $y^{2} \checkmark$
I prop to $R^{3} \checkmark$
For same \% increase in y or R, I and hence E_{k} increases more by increasing $R \checkmark$
Note: $E_{k}=m r^{2} \omega^{2}=4 / 3 \pi R^{3} \rho r^{2} \omega^{2}$ for each ball
(e) $\quad \checkmark$ against Nm s
8. (a)

Translational dynamics	Rotational dynamics
force	torque \checkmark
mass	moment of inertia \checkmark

Do not allow 'inertia'
(b) $I_{\mathrm{T}}=2.6 \times 10^{7}+\left(2.2 \times 10^{3} \times 35^{2}\right)=2.9 \times 10^{7}\left(\mathrm{~kg} \mathrm{~m}^{2}\right) \checkmark$

Mark only awarded for arriving at correct answer to more than 1 sf.
(c) Use of (total) area under graph = (angular) displacement/distance \checkmark

$$
\omega_{\max }((1 / 2 \times 30)+20+(1 / 2 \times 45))=4.7
$$

$$
\omega_{\max }=0.082(\mathrm{rad} \mathrm{~s}-1) \checkmark
$$

Alternative route is area of trapezium

$$
1 / 2 \omega_{\max }(20+95)=4.7
$$

(d) moment of inertia of rotating jib + load increases as trolley moves outwards \checkmark
reference to $T=I \alpha$ with T constant, so α decreases \checkmark
decreased α means longer time to stop(than 95 s) \checkmark
9. (a) $T=6.0 \times 0.036=0.22(\mathrm{~N} \mathrm{~m}) \checkmark$
(b) power cannot increase \checkmark
$P=T \omega$ so if ω is 4 x greater, T cannot be more than $1 / 4 \sqrt{ }$
OR
Work done by (torque) on C cannot be greater than work done (by torque) on B V
$W=T \theta$, if θ is $4 \times$ greater, T cannot be more than $1 / 4 \checkmark$
Or $T_{C} \times 4 \theta_{\mathrm{B}}=\mathrm{T}_{\mathrm{B}} \theta_{\mathrm{B}}$ so $T_{\mathrm{C}}=T_{\mathrm{B}} / 4$
OR
Force same on both/force cannot increase/ r_{C} is $1 / 4 r_{\mathrm{B}} \checkmark$
$F \times r_{\mathrm{C}}=F \times r_{\mathrm{B}} / 4$ so $T \mathrm{C}=T_{\mathrm{B}} / 4$
Or Because radius is $1 / 4$, torque on C must be $1 / 4 \checkmark$
Accept other valid argument e.g. using knowledge that radius of C is $1 / 4$ radius of B, or velocity v at point of mesh of gears is the same for both.
Do not allow 'it is not possible' (WTTE) unless backed up by valid argument.
(c) $\quad \alpha=76 / 2.1=36\left(\mathrm{rad} \mathrm{s}^{-1}\right)\left(36.2 \mathrm{rad} \mathrm{s}^{-1}\right) \checkmark$

$$
I=T / \alpha=\frac{0.054}{36}=1.5 \times 10^{-3}\left(\mathrm{~kg} \mathrm{~m}^{2}\right) \checkmark
$$

ECF for 2nd mark for AE or transposing error.
(d) angular impulse $=$ ang. momentum change $=T \Delta t \checkmark$

1st mark for statement defining angular impulse
Reference to (large) $\Delta(I \omega)$ in small Δt gives large $T \checkmark$
2nd for relating momentum change in small to high T
($T=F \times r$) so large F on gear teeth. \checkmark
3rd for relating high T to high force
10. (a) To smooth out (fluctuations in) rotational speed \checkmark

OR to store (rotational kinetic) energy \checkmark
OR to smooth (fluctuations in) torque/power \checkmark
Any named form of energy must be (rotational) kinetic
Do not allow an application (eg regenerative braking) unless one of the answers shown alongside is included
(b) Use of $0.075 \sin 8^{\circ}$ or $0.075 \tan 8^{\circ}$ or $0.075(\pi-3)$ to calculate h
$h=1.04 \times 10^{-2}(\mathrm{~m})$ OR $1.05 \times 10^{-2}(\mathrm{~m})$ OR $1.06 \times 10^{-2}(\mathrm{~m}) \checkmark$
$m g h=0.020 \times 9.81 \times 1.04 \times 10^{-2}=2.04 \times 10^{-3}(\mathrm{~J}) \checkmark$
$T \theta=2.04 \times 10^{-3}(\mathrm{~J})$

$$
T=2.04 \times 10^{-3} / 3.00=6.80 \times 10^{-4} \mathrm{Nm} \checkmark
$$

1st mark for calculating h
2nd mark for calculating mgh.
3 3rd mark for dividing mgh by 3.00 rad.
Use of tan gives $h=1.05 \times 10^{-2}(\mathrm{~m})$
Use of arc length gives $h=1.06 \times 10^{-2}(\mathrm{~m})$
3rd mark only awarded for arriving at correct answer to more than 1 sig fig
(c) Attempt to use $0=\omega_{1}{ }^{2}-2 \alpha \theta \checkmark$

Or $\theta=573 \times 2 \pi=3600 \mathrm{rad} \checkmark$
Leading to $\alpha=0.087\left(\mathrm{rad} \mathrm{s}^{-2}\right) \checkmark$
$I=\frac{T}{\alpha}=7.82 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \checkmark$

OR

Attempt to use $T \theta=1 / 2 I\left(\omega_{2}^{2}-\omega_{1}^{2}\right) \checkmark$
or $\theta=573 \times 2 \pi=3600 \mathrm{rad} \checkmark$
$\left(I=2 T \theta / \omega_{1}{ }^{2}\right)$
$=2 \times 6.8 \times 10^{-4} \times 573 \times 2 \pi / 25^{2} \checkmark$
$=7.82 \times 10^{-3} \mathrm{~kg} \mathrm{~m}^{2} \checkmark$
1st mark for either use of equation or converting rotations to rad
ECF for 3rd mark
The value of torque used must be a correctly calculated answer to part (b) or $7 \times 10^{-4} \mathrm{~N} \mathrm{~m}$
For 2nd method
2nd mark for correct substitution
3rd mark for calculating answer

